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In today's course

Systems with simple behaviour: automata

a model for finite-memory computations

Languages (string sets) of a simple form: 
concatenation, alternative, repetition



An automaton example: the coffee machine

actions (user): insert coin, press button  

response (automatic): give coffee

After an action does something happen?

coin 

button

No

not immediately
coin, button Yes

Coin had an internal effect: the machine switched to another state

(it behaves differently when the button is pressed)

Coin coin button button gives two coffees?  

if yes, how many coins can it remember?

one or more, but basically a finite number ⇒ finite states



Automata in practice

Many systems can be modeled as automata:

• counters, displays, simple on/off control

• communication protocols: send, receive, wait, ...
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Automata in practice

Many systems can be modeled as automata:

• counters, displays, simple on/off control

• communication protocols: send, receive, wait, ...

Automata are a model for what can be calculated with finite 
memory (automata with finite number of states)

Other problems with automata:
Testing with various input sequences: 
Does it meet specification?



A very simple automaton

starts in state s0

when it receives 1, it changes state  

when it receives 0, it remains in place

After an even numbered string of 1, the machine will be in s0

After an odd numbered string of 1, the automaton will be in s1

⇒ the automaton can distinguish between the two kinds of strings



A very simple automaton

starts in state s0

when it receives 1, it changes state  

when it receives 0, it remains in place

After an even numbered string of 1, the machine will be in s0

After an odd numbered string of 1, the automaton will be in s1

⇒ the automaton can distinguish between the two kinds of strings

If we want an odd number of 1, we mark s1 as accepting state 

string accepted: only if the machine is in accepting state at the 

end

⇒ the automaton defines a lot of strings, i.e. a language
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What is a language

The alphabet is a lot of symbols (characters)

{a, b, c} or {0, 1} or {0, 1, ..., 9}, ...

With the symbols in the alphabet we can form strings (words, 

sequences):

aba, 010010, 437, ...



What is a language

The alphabet is a lot of symbols (characters)

{a, b, c} or {0, 1} or {0, 1, ..., 9}, ...

With the symbols in the alphabet we can form strings (words, 

sequences):

aba, 010010, 437, ...

A language is a set of words (strings)

• like any explicitly defined set: {a, ab, ac, abc}

• or by a rule: strings of a, b, begin with a, more a than b
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Let an alphabet Σ: a set of symbols (e.g. characters)

A finite word over the alphabet Σ is a string of symbols from Σ

a1a2 . . . an ai ∈ Σ any number in any order
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contains empty string: zero repetition
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What is a language (formal) 

Let an alphabet Σ: a set of symbols (e.g. characters)

A finite word over the alphabet Σ is a string of symbols from Σ

a1a2 . . . an ai ∈ Σ any number in any order

Σ∗ = {a1a2 . . . an  | ai  ∈ Σ}
We denote by Σ∗ the set of all finite words over the alphabet Σ

∗ Kleene star: repetition (zero or more occurrences) 

contains empty string: zero repetition

Important: Σ∗ has words of unlimited length, but not infinite

A formal language L is a set of words L ⊆ Σ∗ , defined by certain 
rules: automata, regular expressions, grammars, etc.

Exemple: the language of strings of balanced parentheses; of 
palindromic strings; of strings of 0s and 1s that do not have three 
consecutive 0s; etc.
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Deterministic Finite Automaton (DFA)

An automaton is given by: input symbols

states

transitions (from one state to another) 

initial state

acceptor states (where we want to go)



Deterministic Finite Automaton (DFA)

An automaton is given by: input symbols

  states

  transitions (from one state to another) 

  initial state

  acceptor states (where we want to go)

Formally, a finite automaton is a 5-element tuple (Σ, S, s0, δ, F )

• Σ is an unempty finite alphabet of input symbols {a, 0, 1, ...}

• S is a finite non-empty set of states

• s0 ∈ S is the initial state (one, in the usual definition)

• δ : S × Σ → S is the transition function
a

deterministic: at any state and input, a single next state

• F ⊆ S is the set of acceptor states

finally, we want to be here if the string is good (from the language)



Example of deterministic automaton (1)

parity automaton: accepts strings of 0 and 1 with even number of 1

or as a transitions table

0 1

s0 s0 s1

s1 s1 s0

s0 is the initial state  and accepting state at the same time 

Acceptor states can have transitions:

here, from s0 exit when reading 1

the state we reach when the string ends counts



Example of deterministic automaton (2)

automaton that accepts words with any b (incl. 0) between two a

for δ to be defined everywhere 

another state err is needed in 

practice can be omitted

if from a state there is no 

transition the automaton is 

stuck, the string is no good



Language supported by an automaton

We denote ε ∈ Σ∗ the empty word (without any symbol).

We define a transition function δ∗ : S × Σ∗ → S with word entries:  

In what state does the automaton reach for a given input word?

For any state s ∈ S, we define inductive:

δ∗(s, ε) = s empty word: do nothing

δ∗(s, a1a2 . . . an) = δ∗(δ(s, a1), a2 . . . an) for n > 0

In other words, δ∗(s0, a1a2 . . . an) = δ∗(s1, a2 . . . an), s1 = δ(s0, a1)

we obtain state s1 after input a1, and apply δ∗ on the remaining string

The automaton accepts the word w ∈ Σ∗ if and only if δ∗(s0, w ) ∈ F

(the word leads the automaton to an accepting state)



How do we represent an automaton?

Matrix S × Σ with elements from S
(for each state and input, the next state) 

explicitly represents each combination

a b

s0 s0 s1

s1 s1 s0

Or: a dictionary that gives for each state the transition function also 

represented as a dictionary (entry, state)

If from one state many symbols lead to the same next state, we 

associate each state:

• a dictionary (input, state)

• a default next state (for the other inputs)
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Non-deterministic finite automata (NFA): Example (1)

Example: all strings of a, b, c ending in abc

From s0, receiving the symbol a, the automaton can:

• remain in s0

• move to s1

⇒ the automaton can follow one of several paths

An NFA accepts if there is a choice leading to the accepting state.  

If for a string ...abc we choose to pass into s1 at symbol a, the 
string will be accepted.



Non-deterministic finite automata (NFA): Example (2)

All strings of a, b, c containing a substring ab

Once ab is found, the string is good, however the transitions 
continue from the accepting state to the accepting state.

Advantages of NFA:

• sometimes easier to write than a deterministic automaton (we 
have to describe the acceptor path, not all the others)

• useful when specifying a system: we can leave several 
possibilities open, allows us a choice when implementing



Deterministic and non-deterministic automata

Every non-deterministic automaton has an equivalent deterministic 

automaton (accepts the same strings). 

We show how we do the conversion.



NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table 

with the set of states in 

which each symbol is passed

a b c

{0} {0,1} {0} {0}
When we get a new set (red) we 

add a line to the table.



NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table 

with the set of states in 

which each symbol is passed

a b c

{0} {0,1} {0} {0}

{0,1} {0,1} {0,2} {0}
When we get a new set (red) we 

add a line to the table.



NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table 

with the set of states in 

which each symbol is passed

a b c

{0} {0,1} {0} {0}

{0,1} {0,1} {0,2} {0}

{0,2} {0,1} {0} {0,3}

When we get a new set (red) we 

add a line to the table.
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NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table 

with the set of states in 

which each symbol is passed

a b c

{0} {0,1} {0} {0}

{0,1} {0,1} {0,2} {0}

{0,2} {0,1} {0} {0,3}

{0,3} {0,1} {0} {0}

When we get a new set (red) we 

add a line to the table.

Each set obtained becomes a state in the resulting DFA

0 02

b, 
c

a

b

c  

a c
a

01

b

a

b, c

The acceptor states 

03 are those containing 

an acceptor state from 

the original automaton.



Another example: moving by rule

1 2 3

4 5 6

7 8 9
initial state: 1 

accepted state: 9  

Σ = {a, d }

a: moves adjacent

d: moves diagonally



Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1}

initial state: 1 

accepted state: 9  

Σ = {a, d }

a: moves adjacent

d: moves diagonally



Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

initial state: 1 

accepted state: 9  

Σ = {a, d }

a: moves adjacent

d: moves diagonally



Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}
initial state: 1 

accepted state: 9  

Σ = {a, d }

a: moves adjacent

d: moves diagonally



Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}initial state: 1 

accepted state: 9  

Σ = {a, d }

a: moves adjacent

d: moves diagonally
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4 5 6

7 8 9

a d
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{1,3,5,7} {2,4,6,8} {1,3,5,7,9}
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Σ = {a, d }

a: moves adjacent

d: moves diagonally
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a: moves adjacent

d: moves diagonally



Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}

{1,3,5,7} {2,4,6,8} {1,3,5,7,9}

{2,4,6,8} {1,3,5,7,9} {2,4,6,8}

{1,3,7,9} {2,4,6,8} {5}

initial state: 1 

accepted state: 9  

Σ = {a, d }

a: moves adjacent

d: moves diagonally



Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}

{1,3,5,7} {2,4,6,8} {1,3,5,7,9}

{2,4,6,8} {1,3,5,7,9} {2,4,6,8}

{1,3,7,9} {2,4,6,8} {5}

{1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}

initial state: 1 

accepted state: 9  

Σ = {a, d }

a: moves adjacent

d: moves diagonally



Another example: moving by rule

1 2 3

4 5 6

7 8 9
initial state: 1 

accepted state: 9  

Σ = {a, d }

a: moves adjacent

d: moves diagonally

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}

{1,3,5,7} {2,4,6,8} {1,3,5,7,9}

{2,4,6,8} {1,3,5,7,9} {2,4,6,8}

{1,3,7,9} {2,4,6,8} {5}

{1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}

1

24

5

a

d

a 1-7
d

˜5

a

a

d

ad

d

2-8

d

a

a
1-9

d

1-7 = {1, 3, 5, 7}
2-8 = {2, 4, 6, 8}
˜5 = {1, 3, 7, 9}
1-9 = {1, 3, 5, 7, 9}
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Can we express the definition of a language more 
concisely?

One language = a set of words over an alphabet

We are often interested in words with a simple, "regular" structure:  

• an integer: a sequence of digits, possibly with a sign

• a real: integer part + decimal part (one of them optional), 
optional exponent

• an identifier: letters, digits, _ beginning with letter or _

• file names: 01-title.mp3, 02-title.mp3, ...

Some languages can be efficiently recognized by finite automata

but writing automata takes effort

⇒ can be written more simply as regular expressions



Regular expressions: formal definition

A regular expression describes a (regular) language.  

A regular expression over an alphabet Σ is either:

3 base cases:

∅ empty language

ε language {ε} (with empty string)

a                                language {a} with a ∈ Σ (a one-letter word)

3 recursive cases: given e1, e2 regular expressions, we can form:
e1 + e2 reunion of languages

in practice, often denoted e1|e2 (alternative, "or")

e1 · e2  language concatenation
e1

∗
Kleene's closure of language



Writing rules and examples

Omit parentheses when clear from the precedence 

relationships most prior: ∗, then concatenation and then 

reunion + the dot for concatenation is omitted

In practice abbreviations are also used:

e? for e + ε (e, optional)

e+ for e∗ \ ε (occurs at least once)

(0 + 1)∗ the set of all strings from 0 or 1

(0 + 1)∗0 as above, ending with 0 (even numbers in binary)  

1(0 + 1)∗ + 0 binary numbers, without unnecessary leading 
zeros



Any regular expression is recognized by an automaton

Construction by Ken Thompson (creator of UNIX, 1983 Turing Award)

We define by structural induction:

• how we translate the 3 basic regular expression cases 

• how we combine automata into the 3 recursive cases

⇒ by decomposing, we convert any regular expression into an automaton

∅ nu are stare acceptoare

ε sau

ε

nu consumă simbol

starea inițială

e acceptoare

aa acceptă simbolul a

in the three recursive cases, we combine the automata of the given 
languages

⇒ non-deterministic finite automaton with ε transitions (does not 

consume symbol)



Important - Finite automata

A deterministic finite automaton defines an accepted language.  

Such a language is called a regular language.

It can also be expressed by a regular expression.

The intersection, union, and complement of regular languages 

produce regular languages, as well as concatenation and 

Kleene closure. So they can be recognized by finite automata.

Non-deterministic finite automata can become deterministic

• so they still recognize regular languages

• but the number of states can increase exponentially.

Deterministic and non-deterministic automata and regular 

expressions have the same expressive power (they describe 

regular languages).



Thank you!
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