
Logic and Discrete Structures -LDS

Course 13 – Automata. Regular expressions

S.l. dr. ing. Cătălin Iapă

catalin.iapa@cs.upt.ro

Finite automata
Languages
Deterministic Finite Automata (DFA)
Non-deterministic Finite Automata (NFA)
Regular expressions

In today's course

Systems with simple behaviour: automata

a model for finite-memory computations

Languages (string sets) of a simple form:
concatenation, alternative, repetition

An automaton example: the coffee machine

actions (user): insert coin, press button

response (automatic): give coffee

After an action does something happen?

coin

button

No

not immediately
coin, button Yes

Coin had an internal effect: the machine switched to another state

(it behaves differently when the button is pressed)

Coin coin button button gives two coffees?

if yes, how many coins can it remember?

one or more, but basically a finite number ⇒ finite states

Automata in practice

Many systems can be modeled as automata:

• counters, displays, simple on/off control

• communication protocols: send, receive, wait, ...

Automata in practice

Many systems can be modeled as automata:

• counters, displays, simple on/off control

• communication protocols: send, receive, wait, ...

Automata are a model for what can be calculated with finite
memory (automata with finite number of states)

Automata in practice

Many systems can be modeled as automata:

• counters, displays, simple on/off control

• communication protocols: send, receive, wait, ...

Automata are a model for what can be calculated with finite
memory (automata with finite number of states)

Other problems with automata:
Testing with various input sequences:
Does it meet specification?

A very simple automaton

starts in state s0

when it receives 1, it changes state

when it receives 0, it remains in place

After an even numbered string of 1, the machine will be in s0

After an odd numbered string of 1, the automaton will be in s1

⇒ the automaton can distinguish between the two kinds of strings

A very simple automaton

starts in state s0

when it receives 1, it changes state

when it receives 0, it remains in place

After an even numbered string of 1, the machine will be in s0

After an odd numbered string of 1, the automaton will be in s1

⇒ the automaton can distinguish between the two kinds of strings

If we want an odd number of 1, we mark s1 as accepting state

string accepted: only if the machine is in accepting state at the

end

⇒ the automaton defines a lot of strings, i.e. a language

Finite automata
Languages
Deterministic Finite Automata (DFA)
Non-deterministic Finite Automata (NFA)
Regular expressions

What is a language

The alphabet is a lot of symbols (characters)

{a, b, c} or {0, 1} or {0, 1, ..., 9}, ...

With the symbols in the alphabet we can form strings (words,

sequences):

aba, 010010, 437, ...

What is a language

The alphabet is a lot of symbols (characters)

{a, b, c} or {0, 1} or {0, 1, ..., 9}, ...

With the symbols in the alphabet we can form strings (words,

sequences):

aba, 010010, 437, ...

A language is a set of words (strings)

• like any explicitly defined set: {a, ab, ac, abc}

• or by a rule: strings of a, b, begin with a, more a than b

What is a language (formal)

Let an alphabet Σ: a set of symbols (e.g. characters)

A finite word over the alphabet Σ is a string of symbols from Σ

a1a2 . . . an ai ∈ Σ any number in any order

What is a language (formal)

Let an alphabet Σ: a set of symbols (e.g. characters)

A finite word over the alphabet Σ is a string of symbols from Σ

a1a2 . . . an ai ∈ Σ any number in any order

Σ∗ = {a1a2 . . . an | ai ∈ Σ}
We denote by Σ∗ the set of all finite words over the alphabet Σ

∗ Kleene star: repetition (zero or more occurrences)

contains empty string: zero repetition

Important: Σ∗ has words of unlimited length, but not infinite

What is a language (formal)

Let an alphabet Σ: a set of symbols (e.g. characters)

A finite word over the alphabet Σ is a string of symbols from Σ

a1a2 . . . an ai ∈ Σ any number in any order

Σ∗ = {a1a2 . . . an | ai ∈ Σ}
We denote by Σ∗ the set of all finite words over the alphabet Σ

∗ Kleene star: repetition (zero or more occurrences)

contains empty string: zero repetition

Important: Σ∗ has words of unlimited length, but not infinite

A formal language L is a set of words L ⊆ Σ∗ , defined by certain
rules: automata, regular expressions, grammars, etc.

Exemple: the language of strings of balanced parentheses; of
palindromic strings; of strings of 0s and 1s that do not have three
consecutive 0s; etc.

Finite automata
Languages
Deterministic Finite Automata (DFA)
Non-deterministic Finite Automata (NFA)
Regular expressions

Deterministic Finite Automaton (DFA)

An automaton is given by: input symbols

states

transitions (from one state to another)

initial state

acceptor states (where we want to go)

Deterministic Finite Automaton (DFA)

An automaton is given by: input symbols

 states

 transitions (from one state to another)

 initial state

 acceptor states (where we want to go)

Formally, a finite automaton is a 5-element tuple (Σ, S, s0, δ, F)

• Σ is an unempty finite alphabet of input symbols {a, 0, 1, ...}

• S is a finite non-empty set of states

• s0 ∈ S is the initial state (one, in the usual definition)

• δ : S × Σ → S is the transition function
a

deterministic: at any state and input, a single next state

• F ⊆ S is the set of acceptor states

finally, we want to be here if the string is good (from the language)

Example of deterministic automaton (1)

parity automaton: accepts strings of 0 and 1 with even number of 1

or as a transitions table

0 1

s0 s0 s1

s1 s1 s0

s0 is the initial state and accepting state at the same time

Acceptor states can have transitions:

here, from s0 exit when reading 1

the state we reach when the string ends counts

Example of deterministic automaton (2)

automaton that accepts words with any b (incl. 0) between two a

for δ to be defined everywhere

another state err is needed in

practice can be omitted

if from a state there is no

transition the automaton is

stuck, the string is no good

Language supported by an automaton

We denote ε ∈ Σ∗ the empty word (without any symbol).

We define a transition function δ∗ : S × Σ∗ → S with word entries:

In what state does the automaton reach for a given input word?

For any state s ∈ S, we define inductive:

δ∗(s, ε) = s empty word: do nothing

δ∗(s, a1a2 . . . an) = δ∗(δ(s, a1), a2 . . . an) for n > 0

In other words, δ∗(s0, a1a2 . . . an) = δ∗(s1, a2 . . . an), s1 = δ(s0, a1)

we obtain state s1 after input a1, and apply δ∗ on the remaining string

The automaton accepts the word w ∈ Σ∗ if and only if δ∗(s0, w) ∈ F

(the word leads the automaton to an accepting state)

How do we represent an automaton?

Matrix S × Σ with elements from S
(for each state and input, the next state)

explicitly represents each combination

a b

s0 s0 s1

s1 s1 s0

Or: a dictionary that gives for each state the transition function also

represented as a dictionary (entry, state)

If from one state many symbols lead to the same next state, we

associate each state:

• a dictionary (input, state)

• a default next state (for the other inputs)

Finite automata
Languages
Deterministic Finite Automata (DFA)
Non-deterministic Finite Automata (NFA)
Regular expressions

Non-deterministic finite automata (NFA): Example (1)

Example: all strings of a, b, c ending in abc

From s0, receiving the symbol a, the automaton can:

• remain in s0

• move to s1

⇒ the automaton can follow one of several paths

An NFA accepts if there is a choice leading to the accepting state.

If for a string ...abc we choose to pass into s1 at symbol a, the
string will be accepted.

Non-deterministic finite automata (NFA): Example (2)

All strings of a, b, c containing a substring ab

Once ab is found, the string is good, however the transitions
continue from the accepting state to the accepting state.

Advantages of NFA:

• sometimes easier to write than a deterministic automaton (we
have to describe the acceptor path, not all the others)

• useful when specifying a system: we can leave several
possibilities open, allows us a choice when implementing

Deterministic and non-deterministic automata

Every non-deterministic automaton has an equivalent deterministic

automaton (accepts the same strings).

We show how we do the conversion.

NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table

with the set of states in

which each symbol is passed

a b c

{0} {0,1} {0} {0}
When we get a new set (red) we

add a line to the table.

NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table

with the set of states in

which each symbol is passed

a b c

{0} {0,1} {0} {0}

{0,1} {0,1} {0,2} {0}
When we get a new set (red) we

add a line to the table.

NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table

with the set of states in

which each symbol is passed

a b c

{0} {0,1} {0} {0}

{0,1} {0,1} {0,2} {0}

{0,2} {0,1} {0} {0,3}

When we get a new set (red) we

add a line to the table.

NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table

with the set of states in

which each symbol is passed

a b c

{0} {0,1} {0} {0}

{0,1} {0,1} {0,2} {0}

{0,2} {0,1} {0} {0,3}

{0,3} {0,1} {0} {0}

When we get a new set (red) we

add a line to the table.

NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table

with the set of states in

which each symbol is passed

a b c

{0} {0,1} {0} {0}

{0,1} {0,1} {0,2} {0}

{0,2} {0,1} {0} {0,3}

{0,3} {0,1} {0} {0}

When we get a new set (red) we

add a line to the table.

Each set obtained becomes a state in the resulting DFA

NFA-DFA conversion (example)

30
a

1
b

2
c

a, b, c
We write the transition table

with the set of states in

which each symbol is passed

a b c

{0} {0,1} {0} {0}

{0,1} {0,1} {0,2} {0}

{0,2} {0,1} {0} {0,3}

{0,3} {0,1} {0} {0}

When we get a new set (red) we

add a line to the table.

Each set obtained becomes a state in the resulting DFA

0 02

b,
c

a

b

c

a c
a

01

b

a

b, c

The acceptor states

03 are those containing

an acceptor state from

the original automaton.

Another example: moving by rule

1 2 3

4 5 6

7 8 9
initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1}

initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}
initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}

{1,3,5,7} {2,4,6,8} {1,3,5,7,9}

initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}

{1,3,5,7} {2,4,6,8} {1,3,5,7,9}

{2,4,6,8} {1,3,5,7,9} {2,4,6,8}

initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}

{1,3,5,7} {2,4,6,8} {1,3,5,7,9}

{2,4,6,8} {1,3,5,7,9} {2,4,6,8}

{1,3,7,9} {2,4,6,8} {5}

initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

Another example: moving by rule

1 2 3

4 5 6

7 8 9

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}

{1,3,5,7} {2,4,6,8} {1,3,5,7,9}

{2,4,6,8} {1,3,5,7,9} {2,4,6,8}

{1,3,7,9} {2,4,6,8} {5}

{1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}

initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

Another example: moving by rule

1 2 3

4 5 6

7 8 9
initial state: 1

accepted state: 9

Σ = {a, d }

a: moves adjacent

d: moves diagonally

a d

{1} {2,4} {5}

{2,4} {1,3,5,7} {2,4,6,8}

{5} {2,4,6,8} {1,3,7,9}

{1,3,5,7} {2,4,6,8} {1,3,5,7,9}

{2,4,6,8} {1,3,5,7,9} {2,4,6,8}

{1,3,7,9} {2,4,6,8} {5}

{1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}

1

24

5

a

d

a 1-7
d

˜5

a

a

d

ad

d

2-8

d

a

a
1-9

d

1-7 = {1, 3, 5, 7}
2-8 = {2, 4, 6, 8}
˜5 = {1, 3, 7, 9}
1-9 = {1, 3, 5, 7, 9}

Finite automata
Languages
Deterministic Finite Automata (DFA)
Non-deterministic Finite Automata (NFA)
Regular expressions

Can we express the definition of a language more
concisely?

One language = a set of words over an alphabet

We are often interested in words with a simple, "regular" structure:

• an integer: a sequence of digits, possibly with a sign

• a real: integer part + decimal part (one of them optional),
optional exponent

• an identifier: letters, digits, _ beginning with letter or _

• file names: 01-title.mp3, 02-title.mp3, ...

Some languages can be efficiently recognized by finite automata

but writing automata takes effort

⇒ can be written more simply as regular expressions

Regular expressions: formal definition

A regular expression describes a (regular) language.

A regular expression over an alphabet Σ is either:

3 base cases:

∅ empty language

ε language {ε} (with empty string)

a language {a} with a ∈ Σ (a one-letter word)

3 recursive cases: given e1, e2 regular expressions, we can form:
e1 + e2 reunion of languages

in practice, often denoted e1|e2 (alternative, "or")

e1 · e2 language concatenation
e1

∗
Kleene's closure of language

Writing rules and examples

Omit parentheses when clear from the precedence

relationships most prior: ∗, then concatenation and then

reunion + the dot for concatenation is omitted

In practice abbreviations are also used:

e? for e + ε (e, optional)

e+ for e∗ \ ε (occurs at least once)

(0 + 1)∗ the set of all strings from 0 or 1

(0 + 1)∗0 as above, ending with 0 (even numbers in binary)

1(0 + 1)∗ + 0 binary numbers, without unnecessary leading
zeros

Any regular expression is recognized by an automaton

Construction by Ken Thompson (creator of UNIX, 1983 Turing Award)

We define by structural induction:

• how we translate the 3 basic regular expression cases

• how we combine automata into the 3 recursive cases

⇒ by decomposing, we convert any regular expression into an automaton

∅ nu are stare acceptoare

ε sau

ε

nu consumă simbol

starea inițială

e acceptoare

aa acceptă simbolul a

in the three recursive cases, we combine the automata of the given
languages

⇒ non-deterministic finite automaton with ε transitions (does not

consume symbol)

Important - Finite automata

A deterministic finite automaton defines an accepted language.

Such a language is called a regular language.

It can also be expressed by a regular expression.

The intersection, union, and complement of regular languages

produce regular languages, as well as concatenation and

Kleene closure. So they can be recognized by finite automata.

Non-deterministic finite automata can become deterministic

• so they still recognize regular languages

• but the number of states can increase exponentially.

Deterministic and non-deterministic automata and regular

expressions have the same expressive power (they describe

regular languages).

Thank you!

Bibliography

The content of the course is based on the material from the
LSD course taught by Prof. Dr. Eng. Marius Minea and S.l. Dr.
Eng. Casandra Holotescu
(http://staff.cs.upt.ro/~marius/curs/lsd/index.html)

	Slide 1: Logic and Discrete Structures -LDS
	Slide 2
	Slide 3: In today's course
	Slide 4: An automaton example: the coffee machine
	Slide 5: Automata in practice
	Slide 6: Automata in practice
	Slide 7: Automata in practice
	Slide 8: A very simple automaton
	Slide 9: A very simple automaton
	Slide 10
	Slide 11: What is a language
	Slide 12: What is a language
	Slide 13: What is a language (formal)
	Slide 14: What is a language (formal)
	Slide 15: What is a language (formal)
	Slide 16
	Slide 17: Deterministic Finite Automaton (DFA)
	Slide 18: Deterministic Finite Automaton (DFA)
	Slide 19: Example of deterministic automaton (1)
	Slide 20: Example of deterministic automaton (2)
	Slide 21: Language supported by an automaton
	Slide 22: How do we represent an automaton?
	Slide 23
	Slide 24: Non-deterministic finite automata (NFA): Example (1)
	Slide 25: Non-deterministic finite automata (NFA): Example (2)
	Slide 26: Deterministic and non-deterministic automata
	Slide 27: NFA-DFA conversion (example)
	Slide 28: NFA-DFA conversion (example)
	Slide 29: NFA-DFA conversion (example)
	Slide 30: NFA-DFA conversion (example)
	Slide 31: NFA-DFA conversion (example)
	Slide 32: NFA-DFA conversion (example)
	Slide 33: Another example: moving by rule
	Slide 34: Another example: moving by rule
	Slide 35: Another example: moving by rule
	Slide 36: Another example: moving by rule
	Slide 37: Another example: moving by rule
	Slide 38: Another example: moving by rule
	Slide 39: Another example: moving by rule
	Slide 40: Another example: moving by rule
	Slide 41: Another example: moving by rule
	Slide 42: Another example: moving by rule
	Slide 43
	Slide 44: Can we express the definition of a language more concisely?
	Slide 45: Regular expressions: formal definition
	Slide 46: Writing rules and examples
	Slide 47: Any regular expression is recognized by an automaton
	Slide 48: Important - Finite automata
	Slide 49
	Slide 50: Bibliography

